Multiple Choice Fragen zur Physikalischen Chemie für Pharmazeuten:

Kinetik und Elektrochemie: Themenblock II

/* 32 Punkte */

Markieren Sie wenn nicht anders angegeben jeweils die korrekte Antwort. Bei einigen Fragen sind Mehrfachnennungen möglich.

(1) Elementarreaktionen I: /* 2 Punkte */

Für eine Elementarreaktion mit einer Ausgangskonzentration von 1 mol/L findet man 10 Minuten nach Reaktionsstart noch 0.5 mol/L der Ausgangssubstanz. Nach insgesamt 20 Minuten sind es 0.25 mol/L. Es handelt sich um eine Reaktion:

0. Ordnung a)

b) 1. Ordnung

c) 2. Ordnung d) 3. Ordnung

(2) Elementarreaktionen II: /* 4 Punkte */

Berechnen Sie für die obige Reaktion (1) die Geschwindigkeitskonstant. Sie beträgt:

- $1.16 \cdot 10^{-3} \text{ s}^{-1}$ a)
- $1.16 \cdot 10^{-2} \, \mathrm{s}^{-1}$ b)
- $1.66 \cdot 10^{-3} \, \mathrm{s}^{-1}$ c)
- d) $1.16 \cdot 10^{-3} \, l \cdot mol^{-1} \cdot s^{-1}$

(3) Bimolekulare Reaktionen: /* 2 Punkte */

Eine bimolekulare Reaktion vom Typ $A + B \rightarrow C$ verläuft formal nach 1. Ordnung, wenn:

- a) beide Komponenten die gleiche Konzentration haben.
- b) niemals
- eine der beiden Komponenten das Lösemittel ist. c)
- d) eine der beiden Komponenten ein Katalysator ist und im Unterschuss vorliegt.

(4) Arrhenius-Gleichung: /* 4 Punkte */

Die Geschwindigkeit einer chemischen Reaktion nimmt von T = 20°C nach T = 40°C um den Faktor 5 zu. Die zugehörige Aktivierungsenergie beträgt:

- a) 64 kJ
- $64 \, kI \cdot \text{mol}^{-1}$ c) b)
- 53 kJ d)
- $53 kI \cdot \text{mol}^{-1}$

(5) Ionenleitfähigkeit I: /* 2 Punkte */

Markieren Sie die korrekte/n Aussagen (Mehrfachnennungen möglich!)

- a) Die Ionenwanderungsgeschwindigkeit hängt nur vom Ionenradius ab.
- b) Die Ionenbeweglichkeit hängt nur vom Ionenradius ab.
- c) Die Ionenbeweglichkeit hängt auch vom angelegten elektrischen Feld ab.
- d) Die Ionenbeweglichkeit hängt nicht vom angelegten elektrischen Feld ab.

(6)	Ionenleitfähigkeit II:								/* 4 Punkte */		
	Ein 1-wertiges Ion bewegt sich in einem elektrischen Feld (Spannung 10 V, Elektrodenabstand 1 cm) mit einer Geschwindigkeit von 0.5 cm pro 100 s. Der Ionenradius beträgt:										
	a)	0.35 nm b) 0.17			0.17	nm	m c) 0.05 nm d)			0.02 nm	
	Hinweise: Bei T = 20 °C beträgt die Viskosität von Wasser $0.001~{\rm Pa\cdot s}$. Die Elementarladung beträgt $e=1.6\cdot 10^{-19}~{\rm C}$.										
(7)	Ionenleitfähigkeit III:								/* 4 Punkte */		
	Die Säurekonstante für die Dissoziation einer schwachen Säure in Wasser beträgt $1\cdot 10^{-6}~{ m mol}\cdot l^{-1}$. Wenn mar die Konzentration einer wässrigen Lösung dieser Säure von 1 mol/l auf 0.1 mol/l verdünnt, dann ändert sich die spezifische Leitfähigkeit der Lösung um den Faktor:										
	a)	10	b)	0.1	c)	3.2	d)	0.32			
(8)	Galvanische Ketten I: /* 2 Punkte */										
	Markieren Sie die korrekte/n Aussagen (Mehrfachnennungen möglich!)										
	a) Eine reine Konzentrationskette ist als Batterie ungeeignet.										
	b)	b) NaCl eignet sich gut für die Verwendung in Salzbrücken.									
	c)	KCl eignet sich gut für die Verwendung in Salzbrücken.									
	d)	d) Die Spannung einer Galvanischen Kette ist Temperatur-unabhängig.									
(9)	Galvanische Ketten II:								/* 4 Punkte */		
	Eine Elektrode des Typs Me/Me ²⁺ besitze ein elektrisches Standard-Potential von -0.05 V. Die Löslichkeit dieses Metalls in einer wässrigen Säure bei pH = 3 und T = 25 °C beträgt:										
	a)	0.05 mc	$0 \cdot l^{-1}$		b)	0.05	mmol ·	l ⁻¹			
	c)	0.03 mc	$0 \cdot l^{-1}$		d)	0.03	mmol ·	l ⁻¹			
		anische Ket								/* 4 Punkte */	

fließt ein Strom von 0.2 A. Die elektrische Spannung ist danach gesunken um den Faktor:

d)

0.6

0.7

0.9

b)

a)

8.0

c)