Übungen PC1 für Lehramtskandidaten (Modul 6) im WS 2021/22

3. Übungsblatt – Der 1. Hauptsatz der Thermodynamik

(1)	Formulieren Sie den 1. Hauptsatz der Thermodynamik in differentieller und integraler Form.	
(2)	Formulieren Sie das totale Diff	erential von innerer Energie und Enthalpie für ideale und für reale Gase.
(3)	Geben Sie die maximal erreichbare molare Wärmekapazität $c_{V,mol}$ für die Gase N_2 , O_2 , CO_2 und CH_4 an. Welche Wärmekapazitäten erwarten Sie jeweils bei Raumtemperatur?	
(4)	Leiten Sie Formelausdrücke für die, bei folgenden Prozessen eines idealen Gases, jeweils mit der Umgebung ausgetauschte Wärme und Arbeit her. Wie ändert sich jeweils die Temperatur?	
	a) isobare Expansion	c) adiabatische Expansion
	b) isotherme Expansion	d) isochore Abkühlung
(5)	Um die unter (4) c) abgeleitete Formel für quantitative Berechnungen zu nutzen, benötigen Sie die sogenannte Adiabatengleichung des idealen Gases, typischerweise als <i>T-V-</i> Beziehung. Leiten Sie diese entsprechend her.	
(6) Warum kann man Wasserstoff nicht bei Raum		nicht bei Raumtemperatur nach dem Lindeverfahren verflüssigen?